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Abstract
Some multipartite quantum states can be generated in a sequential manner
which may be implemented by various physical setups such as microwave and
optical cavity QED, trapped ions, quantum dots, etc. We analyze the general
N to M (N � M) qubits’ universal quantum cloning machine (UQCM) within
a sequential generation scheme. We show that the N to M sequential UQCM
is available. The case of d-level quantum states’ sequential cloning is also
presented.

PACS numbers: 03.67.Mn, 03.65.Ud, 42.50.Dv

Quantum entanglement plays a key role in quantum computation and quantum information
[1]. Multipartite entangled states arise as a resource for quantum information processing
tasks such as the well-known quantum teleportation [2], quantum communication [3, 4],
clock synchronization [5], etc. In general, it is extremely difficult to generate experimentally
multipartite entangled states through single global unitary operations. In this sense, the
sequential generation of the entangled states appears to be promising. Actually, most of
the quantum computation networks are designed to implement quantum logic gates through
a sequential procedure [6]. Recently, sequential implementation of quantum information
processing tasks has been attracting much attention. It is pointed out that photonic multiqubit
states can be generated by letting a source emit photonic qubits in a sequential manner [7].
The general sequential generation of entangled multiqubit states in the realm of cavity QED
was systematically studied in [8, 9]. It is also shown that the class of sequentially generated
states is identical to the matrix-product state (MPS), which is very useful in the study of spin
chains of condensed matter physics [10].

On the other hand, much progress has already been made in the past few years in studying
quantum cloning machines; for reviews see, for example, [11–13]. Various quantum cloning
machines have been implemented experimentally by polarization of photons [14–18], nuclear
spins in nuclear magnetic resonance [19, 20], etc. However, these experiments are for 1 to 2
(one-qubit input and two-qubit output) or 1 to 3 cloning machines. The more general case will
be much more difficult. There are some schemes proposed for the general quantum cloning
machines which are not in a sequential manner; see, for example, [21, 22]. Recently, a 1 to
M sequential universal quantum cloning is proposed [23] by using the cloning transformation
presented in [24]. Since it is in a sequential procedure, potentially it reduces the difficulty
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in implementing this quantum cloning machine. However, as is well known the collective
quantum cloning machine (the N identical input states are cloned collectively to M copies)
is better than the quantum cloning machine which can only deal with the individual input
(only one input is copied to several copies each time). We know that the general N to M
cloning transformation is also available in [24, 25]. Then a natural question arises: whether
the general N to M sequential cloning machine is possible? In this paper, we will present the
general sequential universal quantum cloning machine.

The 1 to M cloning transformations used in [23] was proposed by Gisin and Massar in
[24]. The N to M universal quantum cloning machine (UQCM) was also presented in [24].
However, to use the method proposed in [8, 23] to find the sequential cloning machine, the
input state |�〉⊗N should be expanded in computational basis {|0〉, |1〉}. The explicit quantum
cloning transformations with this kind of input were proposed by Fan et al in [25]. In this
paper, based on the result of [23, 25], the general sequential UQCM will be presented.

As presented in [8, 23], the sequential generation of a multiqubit state is as follows.
Let HA be a D-dimensional Hilbert space which acts as the ancillary system and a single
qubit (e.g., a time-bin qubit) is in a two-dimensional Hilbert space HB. In every step of the
sequential generation of a multiqubit state, a unitary time evolution will be acting on the joint
system HA ⊗ HB. We assume that each qubit is initially in the state |0〉 which is like a blank
or an empty state and will not be written out in the formulae. So the unitary time evolution
is written in the form of an isometry V : HA → HA ⊗ HB, where V = ∑

i,α,β V i
α,β |α, i〉〈β|,

each V i is a D × D matrix and the isometry condition takes the form
∑1

i=0 V i†V i = 1. By
successively applying n operations of V (not necessarily the same) on an initial ancillary state
|φI 〉 ∈ HA, we obtain |�〉 = V [n] . . . V [2]V [1]|φI 〉. The generated n qubits are in general
an entangled state, but the last step qubit–ancilla interaction can be chosen so as to decouple
the final multiqubit entangled state from the auxiliary system; so the sequentially generated
state is

|ψ〉 =
1∑

i1...in=0

〈φF|V [n]in . . . V [1]i1 |φI 〉|in, . . . , i1〉, (1)

where |φF〉 is the final state of the ancilla. This is the MPS. It was proven that any MPS can
be sequentially generated [8].

Suppose that there are N identical pure quantum states |�〉⊗N = (x0|0〉 + x1|1〉)⊗N which
need to be cloned to M copies, where |x0|2 + |x1|2 = 1. We know that the input state can be
represented by a basis in symmetric subspace

|�〉⊗N =
N∑

m=0

xN−m
0 xm

1

√
Cm

N |(N − m)0,m1〉, (2)

where |(N −m)0,m1〉 denotes the symmetric and normalized state with (N −m) qubits in the
state |0〉 and m qubits in the state |1〉, and we have Cm

N = N !/(N −m)!m! in standard notation.
So if we find the quantum cloning transformations for all states in symmetric subspace, we
can clone N pure states to M copies. The UQCM with input in symmetric subspace can be
written as [25]

|(N − m)0,m1〉 → ∣∣�m
M

〉
, (3)

where

∣∣�m
M

〉 =
M−N∑
j=0

βmj |(M − m − j)0, (m + j)1〉 ⊗ Rj , (4)
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βmj =
√

C
M−N−j

M−m−j C
j

(m+j)

/
CN+1

M+1, (5)

where Rj are the ancillary states of the cloning machine and are orthogonal with each other for
different j . For a sequential quantum cloning machine in this paper, we choose a realization
Rj ≡ |(M − N − j)1, j0〉 for the ancilla states. This UQCM is optimal in the sense that the
fidelity between the single qubit output state reduced density operator ρout

reduced and the single
input |�〉 is optimal. The optimal fidelity is F = 〈�|ρout

reduced|�〉 = (MN +M +N)/M(N +2);
see [11–13] for reviews and the references therein. A realization of this UQCM with photon-
stimulated emission can be found in [22] which is not in a sequential manner. Next we show
that this general N to M UQCM can be generated through a sequential procedure.

The basic idea is to show that the final state of the cloning,
∣∣�m

M

〉
in (4), can be expressed

in its MPS form. As shown in [8], any MPS can be sequentially generated. We shall follow the
method, for example, as in [23, 26]. By Schmidt decomposition, we first express the quantum
state

∣∣�m
M

〉
as a bi-partite state across 1 : 2 . . . cut,

∣∣�m
M

〉 = λ
[1]
1 |0〉∣∣φ[2...(2M−N)]

1

〉
+ λ

[1]
2 |1〉∣∣φ[2...(2M−N)]

2

〉
=

∑
α1i1

	[1]i1
α1

λ[1]
α1

|i1〉
∣∣φ[2...(2M−N)]

α1

〉
, (6)

where 	[1]0
α1

= δα1,1, 	
[1]1
α1

= δα1,2, and λ[1]
α1

are eigenvalues of the first qubit

reduced density operator, and we find λ
[1]
1 =

√∑M−m−1
k=−m β2

mkC
m+k
M−1

/
Cm+k

M , λ
[1]
2 =√∑M−m−1

k=−m β2
m(k+1)C

m+k
M−1

/
Cm+k+1

M . To correspond with the MPS in (1), we can define

V [1]i1
α1

= 	[1]i1
α1

λ[1]
α1

. Successively by Schmidt decomposition, the quantum state
∣∣�m

M

〉
in

(4) is divided into a bi-partite state with the first n qubits as one part and the rest as another
part, where 1 < n � M − 1. We find

∣∣�m
M

〉 =
n′∑

j=0

λ
[n]
j+1|(n − j)0, j1〉∣∣φ[(n+1)...(2M−N)]

j+1

〉
, (7)

when 1 < n � M − N + m, n′ = n; when M − N + m < n � M − 1, n′ = M − N + m, λ
[n]
j+1

are eigenvalues of the first n qubits reduced density operator of
∣∣�m

M

〉
. According to the results

in equations (4) and (5), we can obtain

λ
[n]
j+1 =

√√√√C
j
n

M−m−n∑
k=−m

β2
m(j+k)

Cm+k
M−n

C
m+j+k

M

. (8)

We also have

∣∣φ[(n+1)...(2M−N)]
j+1

〉 =
√

C
j
n

λ
[n]
j+1

M−m−n∑
k=−m

β2
m(j+k)

√√√√ C
(m+k)
M−n

C
m+j+k

M

|(M − n − m − k)0, (m + k)1〉 ⊗ Rj+k.

By induction and a concise formula, we have∣∣φ[n...(2M−N)]
j+1

〉 =
∑
αn,in

	
[n]in
(j+1)αn

λ[n]
αn

|in〉
∣∣φ[(n+1)...(2M−N)]

αn

〉

=
√

C
j

n−1

λ
[n−1]
j+1

⎡
⎣|0〉∣∣φ[(n+1)...(2M−N)]

j+1

〉 λ
[n]
j+1√
C

j
n

+ |1〉∣∣φ[(n+1)...(2M−N)]
j+2

〉 λ
[n]
j+2√
C

j+1
n

⎤
⎦ , (9)
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where we denote

	
[n]0
(j+1)αn

= δ(j+1)αn

√
C

j

n−1

/(
λ

[n−1]
j+1

√
C

j
n

)
, (10)

	
[n]1
(j+1)αn

= δ(j+2)αn

√
C

j

n−1

/(
λ

[n−1]
j+1

√
C

j+1
n

)
. (11)

Still, we define that

V [n]in
αnαn−1

= 	[n]in
αn−1αn

λ[n]
αn

. (12)

It is thus in the MPS representation. We can further consider other cases including the ancilla
state of the cloning machine represented as Rj (note that it is not the ancilla state in the MPS
representation). We can find that the output state of the general UQCM can be expressed as a
MPS as in form (1). So it can be created sequentially. The explicit results are summarized in
the appendix.

We have shown that the output states of the general UQCM in (4) and (5) are MPSs
and thus can be generated sequentially. The sequential matrices V [n] of course depend on
the input |(N − m)0,m1〉, which are W -like states and are generally multiqubit entangled.
For later convenience, we denote V (m) to express that it depends on the the input state for
different m. By a straightforward method, the sequential cloning operation, i.e. the isometrices,
depending on different inputs may take the form

∑
m |(N −m)0,m〉〈(N −m)0,m1| ⊗V (m).

However, this operation may need a single global unitary operator which involves N-qubit
entangled states except for m = 0,m = N . This contradicts with our aim that each
operation should be divided into sequential unitary operators in a quDit (quantum state in
D-dimensional space) times qubit system. Here, we can use a scheme as follows: the ancillary
state interacts with each qubit according to the (N + 1) × D-dimensional isometrices as∑

m

√
Cm

N |0〉〈0|⊗N−m ⊗ |1〉〈1|⊗m ⊗ V (m) sequentially; here a whole normalization factor is
omitted. We know that the operation |0〉〈0|⊗N−m ⊗ |1〉〈1|⊗m acts on each qubit individually.
Thus, this scheme reduces the complexity of the operation. This finishes our general sequential
UQCM for the case of qubit. In the case N = 1, we recover the result of [23] for 1 to M
cloning. We should remark that similar as the case of sequential 1 to M UQCM in [23], for
the general sequential UQCM, the minimal dimension D of the ancillary state grows linearly
at most with M − N/2 + 1 for even N or M − (N − 1)/2 for odd N.

Next, we will consider a more general case that the sequential cloning machine is about the
quantum state in d-dimensional Hilbert space. We will use the d-dimensional UQCM proposed
by Fan et al in [25]. This UQCM is a generalization of the cloning machine proposed in [24]
and we can use this UQCM to study its sequential form for the d-dimensional case.

An arbitrary d-dimensional pure state takes the form |�〉 = ∑d−1
i=0 xi |i〉 with

∑d−1
i=0 |xi |2 =

1. N identical pure states can be expanded in terms of state in symmetric subspace

|�〉⊗N = ∑N
�m=0

√
N!

m1!...md !x
m1
0 . . . x

md

d−1| �m〉, where | �m〉 ≡ |m1, . . . , md〉 is a symmetric state

with mi states of |i − 1〉, and also mi should satisfy a relation
∑d

i=1 mi = N . The cloning
transformations with states in the symmetric subspace can be written as

| �m〉 → ∣∣� �m
M

〉 =
M−N∑
�j=0

β �m�j | �m + �j 〉 ⊗ |�j〉, (13)

β �m�j =

√√√√∏d
i=1 C

ji

mi+ji

CM−N
M+d−1

, (14)

4
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where �j should satisfy
∑

i ji = M − N . This cloning machine is optimal and the
corresponding fidelity of a single quantum state between the input and output is F =
(N(d + M) + M − N)/(d + N)M .

As for a d-dimensional system, we next show that the output states for all symmetric
states input can be expressed as the sequential form. We consider the case 1 < n � M − 1,
and the state

∣∣� �m
M

〉
is a bipartite state across 1, . . . , n : (n + 1) . . . cut,

∣∣� �m
M

〉 =
M∑

�j=0

M−n∑
�k=0

λ
[n]
�j |�j 〉∣∣φ[(n+1)...(2M−N)]

�j
〉
, (15)

where

λ
[n]
�j =

√√√√M−n∑
�k=0

β2
�m(�j−�m+�k)

∏d
i=1 C

ji

ji+ki

Cn
M

, (16)

∣∣φ[(n+1)...(2M−N)]
�j

〉 =
M−n∑
�k=0

β �m(�j−�m+�k)

√√√√∏d
i=1 C

ji

ji+ki

Cn
M

|�k〉|�j − �m + �k〉/λ
[n]
�j . (17)

By the same procedure as that of the qubit case, we can obtain the following:∣∣φ[n...(2M−N)]
�j

〉 =
∑
αnin

	
[n]in
�jαn

λ[n]
αn

|in〉
∣∣φ(n+1)...(2M−N)]

αn

〉
. (18)

Then we have

	
[n]in
�jαn

= δαn(�j+�ein+1)

√
jin+1 + 1

n

/
λ

[n−1]
�j . (19)

Still we can define V [n]in
αnαn−1

= 	[n]in
αn−1αn

λ[n]
αn

, and thus we can find that each state
∣∣� �m

M

〉
is a MPS

and thus can be sequentially generated. The detailed result of this part will be presented
elsewhere [27].

In conclusion, we show that the general N to M universal quantum cloning machine can
be implemented by a sequential manner. This general sequential quantum cloning machine
may be implemented much more easily than the single global implementation scheme, since
the sequential generation of a multipartite state can be implemented in various physical setups
such as microwave and optical cavity QED, trapped ions, quantum dots, etc. This reduces
dramatically the complexity in implementing the general UQCM. We also show that for
d-dimensional quantum state, the sequential UQCM is also available. Besides the universal
cloning machine, the 1 to M phase-covariant quantum cloning machine can also be sequentially
implemented. It will be interesting to consider similarly the general N to M phase-covariant
cloning and the economic phase-covariant cloning. The sequential asymmetric quantum
cloning machine may also be an interesting topic.
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Appendix

The explicit forms of matrices V are presented as

V [n]0
αnαn−1

= δαnαn−1

⎛
⎜⎝

∑M−m−n
k=−m X

Cm+k
M−n

C
m+αn−1−1+k

M∑M−m−n+1
k=−m X

Cm+k
M−n+1

C
m+αn−1−1+k

M

⎞
⎟⎠

1/2

,
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V [n]0
αnαn−1

= δαnαn−1+1

⎛
⎜⎝

∑M−m−n
k=−m X′ Cm+k

M−n

C
m+αn−1+k

M∑M−m−n+1
k=−m X

Cm+k
M−n+1

C
m+αn−1−1+k

M

⎞
⎟⎠

1/2

,

where notations X = β2
m(αn−1−1+k) and X′ = β2

m(αn−1+k) are used. For the case 1 < n �
M − N + m,αn−1 = 1, . . . , n, αn = 1, . . . , (n + 1), and for the case M − N + m < n �
M − 1, αn−1, αn = 1, . . . , (M − N + m + 1). We can check that the above-defined V satisfies
the isometry condition

∑
in

[V [n]in]†V [n]in = 1. Similarly, we have

V [M]0
αMαM−1

= δαMαM−1

⎛
⎜⎝

β2
m(αM−1−1−m)

C
αM−1
M

β2
m(αM−1−1−m)

C
αM−1−1
M

+
β2

m(αM−1−m)

C
αM−1
M

⎞
⎟⎠

1/2

,

V [M]1
αMαM−1

= δαM(αM−1+1)

⎛
⎜⎝

β2
m(αM−1−m)

C
αM−1
M

β2
m(αM−1−1−m)

C
αM−1−1
M

+
β2

m(αM−1−m)

C
αM−1
M

⎞
⎟⎠

1/2

,

where 0 � m � N − m,αM−1, αM = 1, 2, . . . , (M − N + m + 1).
For the case concerned about the ancilla state of the UQCM, assume 1 � l � M −N ; we

have

V [M+l]0
αM+lαM+l−1

= δαM+l (αM+l−1−1)

(
αM+l−1 − m − 1

M − N − l + 1

)1/2

,

V [M+l]1
αM+lαM+l−1

= δαM+lαM+l−1

(
M − N − l − αM+l−1 + m + 1

M − N − l + 1

)1/2

.

(1) For (m + 1) � αM+l � (M − N + m − l + 1), (m + 2) � αM+l−1 � (M − N + m −
l + 2), V [M+l]0

αM+lαM+l−1
= δαM+l (αM+l−1−1)

√
αM+l−1−m−1
M−N−l+1 . For αM+l = (M − N + m − l + 2), 1 �

αM+l−1 � (M − N + m + 1), V [M+l]0
αM+lαM+l−1

= 0. Otherwise V [M+l]0
αM+lαM+l−1

= δαM+lαM+l−1
1√
2
.

(2) For (m + 1) � αM+l , αM+l−1 � (M − N + m − l + 1), V [M+l]1
αM+lαM+l−1

=
δαM+lαM+l−1

√
M−N−l−αM+l−1+m+2

M−N−l+1 . For αM+l = (M − N + m − l + 2), 1 � αM+l−1 �
(M − N + m + 1), V [M+l]0

αM+lαM+l−1
= 0. Otherwise V [M+l]0

αM+lαM+l−1
= δαM+lαM+l−1

1√
2
.
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